217 research outputs found

    The Wonderful World of Corals: Harnessing Basic Science to Address and Ecological Crisis

    Get PDF
    This item includes a video recording of a Mānoa Faculty Lecture Series presentation that took place in the University of Hawai'i at Mānoa Library and also a flyer for that presentation.Coral reefs in Hawai'i and across the globe continue to decline in health due to intensifying climate change, resource extraction, and pollution. Although the future looks bleak, certain corals and reefs are not only surviving, but also thriving in conditions that kill others. Dr. Gates will unveil the complex biology that underpins this natural variation in response. She will then discuss how this knowledge can be harnessed to develop tools that build resilience on reefs, arresting and improving the prognosis for coral reefs

    The early expansion and evolutionary dynamics of POU class genes.

    Get PDF
    The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency

    High-Frequency Temperature Variability Mirrors Fixed Differences in Thermal Limits of the Massive Coral \u3ci\u3ePorites lobata\u3c/i\u3e

    Get PDF
    Spatial heterogeneity in environmental characteristics can drive adaptive differentiation when contrasting environments exert divergent selection pressures. This environmental and genetic heterogeneity can substantially influence population and community resilience to disturbance events. Here, we investigated corals from the highly variable back-reef habitats of Ofu Island in American Samoa that thrive in thermal conditions known to elicit widespread bleaching and mortality elsewhere. To investigate the relative importance of acclimation versus site of origin in shaping previously observed differences in coral tolerance limits at Ofu Island, specimens of the common Indo-Pacific coral Porites lobata from locations with differing levels of thermal variability were acclimated to low and high thermal variation in controlled common garden aquaria. Overall, there were minimal effects of the acclimation exposure. Corals native to the site with the highest level of daily variability grew fastest, regardless of acclimation treatment. When exposed to lethal thermal stress, corals native to both variable sites contained elevated levels of heat shock proteins and maintained photosynthetic performance for 1–2 days longer than corals from the stable environment. Despite being separated by \u3c5 \u3ekm, there was significant genetic differentiation among coral colonies (FST=0.206, PCladocopium sp. (ITS type C15). Our study demonstrates consistent signatures of adaptation in growth and stress resistance in corals from naturally thermally variable habitats, suggesting that differences in the amount of thermal variability may be an important contributor to adaptive differentiation in reef-building corals

    Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance

    Get PDF
    The persistence of reef building corals is threatened by human-induced environmental change. Maintaining coral reefs into the future requires not only the survival of adults, but also the influx of recruits to promote genetic diversity and retain cover following adult mortality. Few studies examine the linkages among multiple life stages of corals, despite a growing knowledge of carryover effects in other systems. We provide a novel test of coral parental conditioning to ocean acidification (OA) and tracking of offspring for 6 months post-release to better understand parental or developmental priming impacts on the processes of offspring recruitment and growth. Coral planulation was tracked for 3 months following adult exposure to high pCO2 and offspring from the second month were reciprocally exposed to ambient and high pCO2 for an additional 6 months. Offspring of parents exposed to high pCO2 had greater settlement and survivorship immediately following release, retained survivorship benefits during 1 and 6 months of continued exposure, and further displayed growth benefits to at least 1 month post release. Enhanced performance of offspring from parents exposed to high conditions was maintained despite the survivorship in both treatments declining in continued exposure to OA. Conditioning of the adults while they brood their larvae, or developmental acclimation of the larvae inside the adult polyps, may provide a form of hormetic conditioning, or environmental priming that elicits stimulatory effects. Defining mechanisms of positive acclimatization, with potential implications for carry over effects, cross-generational plasticity, and multi-generational plasticity, is critical to better understanding ecological and evolutionary dynamics of corals under regimes of increasing environmental disturbance. Considering environmentally-induced parental or developmental legacies in ecological and evolutionary projections may better account for coral reef response to the chronic stress regimes characteristic of climate change

    Variation in Coral Thermotolerance Across a Pollution Gradient Erodes as Coral Symbionts Shift to More Heat-Tolerant Genera

    Get PDF
    Phenotypic plasticity is one mechanism whereby species may cope with stressful environmental changes associated with climate change. Reef building corals present a good model for studying phenotypic plasticity because they have experienced rapid climate-driven declines in recent decades (within a single generation of many corals), often with differential survival among individuals during heat stress. Underlying differences in thermotolerance may be driven by differences in baseline levels of environmental stress, including pollution stress. To examine this possibility, acute heat stress experiments were conducted on Acropora hyacinthus from 10 sites around Tutuila, American Samoa with differing nutrient pollution impact. A threshold-based heat stress assay was conducted in 2014 and a ramp-hold based assay was conducted in 2019. Bleaching responses were measured by assessing color paling. Endosymbiont community composition was assessed at each site using quantitative PCR. RNA sequencing was used to compare differences in coral gene expression patterns prior to and during heat stress in 2019. In 2014, thermotolerance varied among sites, with polluted sites holding more thermotolerant corals. These differences in thermotolerance correlated with differences in symbiont communities, with higher proportions of heat-tolerant Durusdinium found in more polluted sites. By 2019, thermotolerance varied less among sites, with no clear trend by pollution level. This coincided with a shift toward Durusdinium across all sites, reducing symbiont community differences seen in 2014. While pollution and symbiont community no longer could explain variation in thermotolerance by 2019, gene expression patterns at baseline levels could be used to predict thermotolerance thresholds. These patterns suggest that the mechanisms underlying thermotolerance shifted between 2014 and 2019, though it is possible trends may have also been affected by methodological differences between heat stress assays. This study documents a shift in symbiont community over time and captures potential implications of that shift, including how it affects variation in thermotolerance among neighboring reefs. This work also highlights how gene expression patterns could help identify heat-tolerant corals in a future where most corals are dominated by Durusdinium and symbiont-driven thermotolerance has reached an upper limit

    Short-Term Thermal Acclimation Modifies the Metabolic Condition of the Coral Holobiont

    Get PDF
    The nutritional symbiosis between coral hosts and photosynthetic dinoflagellates is fundamental to the functioning of coral reefs. Rising seawater temperatures destabilize this relationship, resulting in drastic declines in world-wide coral cover. Thermal history is thought to play an important role in shaping a coral\u27s response to subsequent thermal stress. Here, we exposed Pocillopora damicornis to two thermal acclimation regimes (ambient vs. warm) and compared the effect that acclimation had on the coral holobiont\u27s response to a subsequent seven day heat stress event. We conducted daily physiological measurements at the holobiont level (gross photosynthesis, respiration, host protein content, symbiont density and chlorophyll content) throughout the heating event, as well as cellular-level imaging of 13C-bicarbonate and 15N-nitrate assimilation (using NanoSIMS) at the end of the heat stress event. Thermal acclimation history had a negligible effect on the measurements conducted at the holobiont level during the heat stress event. No differences were observed in the O2-budget between ambient and warm-acclimated corals and only small fluctuations in host protein, symbiont density and chlorophyll content were detected. In contrast, this lack of differential response, was not mirrored at the cellular level. Warm-acclimated corals had substantially higher 13C enrichment in the host gastrodermis and lipid bodies, but significantly lower 15N-nitrate assimilation in the symbionts and the host tissue layers, relative to the ambient-acclimated corals. We discuss potential reasons for the disconnect that occurred between symbiont bicarbonate and nitrate assimilation (in the absence of photosynthetic breakdown) in the warm-acclimated corals. We suggest this represents either a shift in nitrogen utilization, or supply limitation by the host. Our findings raise several interesting hypotheses regarding the role that nitrogen metabolism plays in thermal stress, which will warrant further investigation if we are to understand the acclimatization capacity of the coral holobiont

    The Effect of a Sublethal Temperature Elevation on the Structure of Bacterial Communities Associated with the Coral Porites compressa

    Get PDF
    Evidence points to a link between environmental stressors, coral-associated bacteria, and coral disease; however, few studies have examined the details of this relationship under tightly controlled experimental conditions. To address this gap, an array of closed-system, precision-controlled experimental aquaria were used to investigate the effects of an abrupt 1°C above summer ambient temperature increase on the bacterial community structure and photophysiology of Porites compressa corals. While the temperature treatment rapidly impacted the photophysiology of the coral host, it did not elicit a statistically significant shift in bacterial community structure from control, untreated corals as determined by terminal restriction fragment length polymorphism analysis of 16S rRNA genes. Two of three coral colonies harbored more closely related bacterial communities at the time of collection and, despite statistically significant shifts in bacterial community structure for both control and treatment corals during the 10-day acclimation period, maintained this relationship over the course of the experiment. The experimental design used in this study proved to be a robust, reproducible system for investigating coral microbiology in an aquarium setting

    Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30 - 150 m) provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus <it>Symbiodinium</it>. We sampled <it>Leptoseris </it>spp. in Hawaii via manned submersibles across a depth range of 67 - 100 m. Both the host and <it>Symbiodinium </it>communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5) and the nuclear ribosomal internal transcribed spacer region 2 (ITS2), respectively.</p> <p>Results</p> <p>Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water <it>Symbiodinium </it>ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363) and exhibited genetic variability at mitochondrial NAD5.</p> <p>Conclusion</p> <p>This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the <it>Symbiodinium </it>community (based on ITS2) alone is not responsible for the dominance and broad depth distribution of <it>Leptoseris </it>spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus <it>Leptoseris </it>from Hawaii.</p

    Divergent Evolutionary Histories of DNA Markers in a Hawaiian Population of the Coral Montipora capitata

    Get PDF
    We investigated intra- and inter-colony sequence variation in a population of the dom- inant Hawaiian coral Montipora capitata by analyzing marker gene and genomic data. Ribosomal ITS1 regions showed evidence of a reticulate history among the colonies, suggesting incomplete rDNA repeat homogenization. Analysis of the mitochondrial genome identified a major (M. capitata) and a minor (M. flabellata) haplotype in single polyp-derived sperm bundle DNA with some colonies containing 2-3 different mtDNA haplotypes. In contrast, Pax-C and newly identified single-copy nuclear genes showed either no sequence differences or minor variations in SNP frequencies segregating among the colonies. Our data suggest past mitochondrial introgression in M. capitata, whereas nuclear single-copy loci show limited variation, highlighting the divergent evolutionary histories of these coral DNA markers

    Genome analysis of the rice coral \u3cem\u3eMontipora capitata\u3c/em\u3e

    Get PDF
    Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation
    corecore